Nitric oxide and the neurotoxic effects of methamphetamine and 3,4-methylenedioxymethamphetamine.

نویسندگان

  • T Taraska
  • K T Finnegan
چکیده

The role of nitric oxide (NO) in the long-term, amine-depleting effects of methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) was investigated in the rodent central nervous system. The NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) antagonized the dopamine- and serotonin-depleting effects of both METH and MDMA. The protective actions of L-NAME in METH-treated mice were reversed by prior administration of the NO generator isosorbide dinitrate. However, pretreatment with N(G)-monomethyl-L-arginine or N(G)-nitro-L-arginine, two other NO synthase inhibitors, failed to block the neurotoxic effects of METH or MDMA. L-NAME was also the only NO synthase inhibitor that antagonized the hyperthermic effects of METH, reducing colonic temperatures in mice by a mean of 3 degrees C, in comparison with control. Moreover, if the hypothermic effects of L-NAME in METH-treated mice were prevented by raising the ambient room temperature, the dopamine-depleting actions of the stimulant were fully restored. The latter findings suggest that it is the hypothermic actions of L-NAME, rather than its NO inhibitory properties, that are responsible for the prevention of neurotoxicity. Together with the results of the N(G)-monomethyl-L-arginine and N(G)-nitro-L-arginine experiments, the data suggest that NO plays little or no role in the toxic mechanism of action of METH or MDMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of nitrergic system in behavioral and neurotoxic effects of amphetamine analogs.

Several amphetamine analogs are potent psychostimulants and major drugs of abuse. In animal models, the psychomotor and reinforcing effects of amphetamine, methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), and methylphenidate (MPD; Ritalin) are thought to be dependent on increased extracellular levels of dopamine (DA) in mesocorticolimbic and mesostriatal pathways. Howe...

متن کامل

Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain.

Production of reactive oxygen and/or nitrogen species has been thought to contribute to the long-term depletion of brain dopamine and serotonin (5-HT) produced by amphetamine derivatives, i.e., methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effects of nitric-oxide synthase (NOS) inhibitors were examined on the long-term depletion of striatal dopamine and...

متن کامل

Expression and activity of nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine toxicity.

Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined...

متن کامل

Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transpor...

متن کامل

Striatal postsynaptic ultrastructural alterations following methylenedioxymethamphetamine administration.

Amphetamine derivatives, such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), act as monoaminergic neurotoxins in the central nervous system. Although there are slight differences in their mechanism of action, these compounds share a final common pathway, which involves dopamine release and oxidative stress. Apart from striatal toxicity involving monoamine axons, no prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 280 2  شماره 

صفحات  -

تاریخ انتشار 1997